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Lévy scaling in random walks with fluctuating variance

P. Santini*
Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland

~Received 10 June 1999!

Truncated Le´vy flights with correlated fluctuations of the variance~heteroskedasticity! are considered. A
stylized model is introduced, in which the variance fluctuates between two possible values following a Markov
chain process. Analogously to conventional truncated Le´vy flights with fixed variance, the central part of the
probability distribution function of the increments at short time scales is found to be close to a Le´vy distribu-
tion. What makes these processes interesting is the fact that the crossover to the Gaussian regime may occur for
times considerably larger than for uncorrelated~or no! variance fluctuations. Processes of this type may find
direct application in the modeling of some economic time series, in which Le´vy scaling and heteroskedasticity
are known to coexist.

PACS number~s!: 05.40.Fb, 02.50.Ga, 87.23.Ge
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I. INTRODUCTION

The ubiquity of the Gaussian probability distributio
function ~PDF! in physics and statistics is a consequence
the central limit theorem~CLT! @1#, which states that the
PDF of the sum ofN independent, identically distribute
~i.i.d.! stochastic variables whose variance is finite conver
to the Gaussian PDF whenN→`.

If the hypothesis of finite variance is relaxed, a gener
ized CLT still exists@2,3#: the PDF of the sum belongs to th
family of Lévy stable distributions, defined by the charact
istic function ~Fourier transform!

L~z!5exp@ imz2guzua„11 ibz/uzutan~ap/2!…#, ~1!

with 0,a<2. Fora52 the Gaussian distribution is recov
ered, while for a,2 the PDF possesses power-law ta
L(x);Cx2(11a) which make the variance infinite. In thi
paper, only symmetrically distributed stochastic variables
considered, for whichm5b50.

A Lévy flight @2–4# ~LF! is a random walk in which the
step length is chosen from the PDF of Eq.~1!. Since Lévy
distributions are stable under convolution, the LF proces
self-similar, i.e., the same Le´vy distribution describes incre
ments over different time scales, provided the increments
appropriately rescaled.

Lévy flights appear in various physical problems@4,5#, in
particular diffusion, fluid dynamics, and polymers. Howev
because of their infinite variance and lack of a characteri
scale, Le´vy PDFs overestimate the probability of extrem
events when used to model real physical systems, for wh
an unavoidable cutoff is always present@6#. The most direct
way to make the variance finite is by means oftruncated
Lévy ~TL! PDF’s @6#. The TL PDF is close to a Le´vy PDF
for small argument, but it contains a sharp@6# or exponential
@7# cutoff in the tails. A truncated Le´vy flight ~TLF! is a
random walk in which the step length is chosen from a
PDF.

*Present address: Oxford Physics, Clarendon Laboratory, P
Road, Oxford OX1 3PU, UK.
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The TL PDF belongs to the basin of attraction of t
Gaussian PDF: for largeN the sum ofN i.i.d. TL variables is
Gaussian-distributed. For smallN the central part of the PDF
of the sum has a Le´vy shape, but the variance and high
moments are finite. For symmetric TL PDF’s the deviati
from a Gaussian may be quantified by the value of the n
malized fourth cumulant~kurtosis,k) @1#. This is zero for a
Gaussian, and positive for a TL PDF. The crossover to
Gaussian regime is given byN@N0} l a with l the cutoff
length. Under this condition,k becomes very small~see Eq.
~20!!.

In this paper, the TLF stochastic process is generalize
include a special form of nonlinear dependence of the inc
ments calledheteroskedasticity. One can build processe
with dependent increments such that the central part of
PDF of the sum still approximately behaves as in a Le´vy
flight. What makes these processes interesting is the fact
the crossover to the Gaussian PDF may be pushed to va
of N which are larger by some order of magnitudes than
the increments were independent.

II. LÉ VY PDF IN ECONOMIC TIME SERIES

Besides being interesting per se, these processes a
direct relevance to one of the most noteworthy applicatio
of LF outside physics, i.e., to the modeling of some financ
time series@8#. From a physicist’s perspective, the market
a very good example of a complex system@9–11# in which
the mutual interaction and competition among a great nu
ber of agents~traders or speculators! with continually adapt-
ing strategies, together with the influence of unpredicta
exogenous factors, usually produces an intricate out
equilibrium dynamics.

In the classical equilibrium theory of economy it is a
sumed that ‘‘equilibrium’’ values for the prices exist, sati
fying an aggregate, overall consistency condition~recalling
the so calledNashequilibria solutions of game theory@12#!.
However, the complex dynamics of market prices does
seem to fit this classical picture. In particular, trading volum
and price volatility are much higher than expected from
classical theory@13#. From time to time, the market ma
display strong movements~crashes or boosts!, which cannot
ks
93 ©2000 The American Physical Society
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94 PRE 61P. SANTINI
always be understood in terms of rational reactions to inco
ing new information@14#. Instead, some of their feature
recall the physical concept of self-organized criticality@15#.

At last, trading volumes and variances of price increme
change over time@16#, and may persist as low or high fo
long periods. The existence of such correlated variance fl
tuations~heteroskedasticity! is difficult to understand in the
framework of classical equilibrium theory, and few ec
nomic models can explain it~see, e.g., Ref.@17#, where an
equilibrium model capable to mimic volatility fluctuations o
interest rates is developed!.

A fundamental source of this complex dynamics may
found in the inductive, subjective, and adaptive nature of
process leading agents to formulate the expectations w
drive their actions@9,18–22#, an aspect whose fundament
features can be captured by more or less elaborated artifi
life models@9,20,23–28#.

Aside the ‘‘microscopic’’ origin of the complexity of fi-
nancial markets, another aspect of the problem is the p
nomenological ~‘‘macroscopic’’! characterization of this
complexity, in particular the study of the properties of ec
nomic time series. The development of new tools in
theory of nonlinear dynamical systems triggered a gr
amount of initial interest in the possibility of chaotic dynam
ics in financial and macroeconomic time series~e.g., the
problem of macroeconomic cycles! @10,29–31#. However,
little evidence for low-dimensional chaos has been fou
For ‘‘efficient’’ financial markets this is not surprising, sinc
it is clear that any evident~linear or nonlinear! forecastability
would rapidly be eliminated by agents exploiting it.

Given the low level of determinism of these series, t
most fruitful description is in terms of stochastic process
Martingale processes@1# are the signature of market effi
ciency. In particular, random walk or Brownian-motion mo
els have been used for a long time to model the increm
of asset prices@32#. This might be understood by the centr
limit theorem if price changes resulted from the sum of ma
independent random contributions, which would seem a
sonable assumption. Indeed, empirical studies of finan
time series have revealed Gaussian behavior for long t
scales, typically of the order of several days. However, it
been shown@8,33# that for short time scales the central pa
of the PDF is not Gaussian. It is well described by a Le´vy
distribution, and therefore suggests an underlying LF rat
than random-walk model.

Non-Gaussian scaling has been found in many econo
cal or financial indices@8,34–40#. The way this scaling
emerges is the central issue for the microscopic models m
tioned above~see also Refs.@41,42#, where a Langevin-type
approach is discussed!. In financial time series, scale invar
ance can be characterized@i.e., the value of the self-similarity
exponenta in Eq. ~1! can be extracted# either by comparing
the full PDF of price increments over different time scale
or by studying the time-scale dependence of some sele
properties of the PDF. For example, the probability of retu

PN~x50!5
1

pE0

`

„L~z!…N, ~2!

which depends on the time scaleN as N21/a, was used to
extract the valuea;1.40 in the high-frequency~one-minute!
-
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variations of the Standard & Poor’s 500~S&P500! index
@8,33#. An alternative quantity which may be used is th
so-called Hurst exponent~see, e.g., Ref.@39#!.

As with other applications of LF, while Le´vy distributions
describe well the central part of the PDF for short times,
power-law tails of these distributions are much fatter th
observed. In particular, the observed variance is finite.
the previous remarks suggest the TLF as the best cand
to model these series@39,43#.

Two aspects, however, remain unexplained: one is
fact that the crossover to the Gaussian regime occurs at m
larger times than expected from the TLF model~and from
any model with i.i.d. increments as well!. For example, the
one-minute PDFP1 of the S&P500 index increments ha
kurtosisk1543 @8,43#. If the PDF at timeN, PN , wereP1
convolutedN times with itself ~with kurtosis kN5k1 /N),
Gaussian behavior would be expected forN@k1 ~see Fig. 1!.
However, the central part ofPN displays Lévy behavior up to
at leastN51000 @8#.

The second aspect not accounted for is heteroskedast
even if linear correlations are almost zero, there are corr
tions of the squared increments, i.e., the increments at dif
ent times are uncorrelated yet not independent random v
ables. Put another way, one cannot factorize the jo
probability density of the increments at different times in
the product of reduced densities. The model proposed in
following can account at the same time for both these
pects.

III. MODELS FOR HETEROSKEDASTICITY

A. Gaussian-type models

Many efforts have been devoted in the past two deca
to the study of time-varying variance, and various mod
have been put forward by econometricians. Roughly, t
great classes of models exist: autoregressive-conditio
heteroskedasticity~ARCH!-type models and stochastic
variance~SV!-type models.

Models of both classes are usually set up in a Gaus
framework: if time is discretized with an elementary tim
stept, the increments at thekth time step~i.e., att5kt) are
assumed to be random variables of the form

xk5mk1Avkek . ~3!

Here mk is the time-varying mean of the stochastic proce
(mk is very small, and can safely be set to zero, for the sh
time scales considered here!, vk is a random variable repre
senting the time-varying variance of the process, andek are
independent Gaussian random variables with zero mean
unit variance, independent ofvk .

ARCH and SV models differ in the way thesk process is
specified: in ARCH-type models@44,45# the variance at time
stepk is a deterministic function of the past squared inc
ments and variances, while in SV-type models@46# the vari-
ance is not completely determined by the past data, sinc
contains a random contribution. With suitable choices
their parameters, both type of models can account for
heteroskedasticity and positive kurstosis~leptokurtosis! of
the PDF of financial series, although usually they fail to ca
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ture all aspects of the data@47#. In particular, it has been
shown by numerical simulations in Ref.@43# that the sim-
plest ARCH-type models do not yield the Le´vy-type scaling
of the PDF described above, since already at short times
value of the scaling exponent is close to the Gaussian o

B. General models

Let us assume thexk to be zero-mean random variable
with variancevk , with a symmetric PDFP1

vk(xk) depending
on the parametervk in an as yet unspecified way. The p
rameterv fluctuates in time following a stationary proces
Let pN(v1 , . . . ,vN) be the joint PDF of the variances at th
different times, and let us assume the joint PDF of inc
ments and variances

PN~x1 , . . . ,xN ;v1 , . . . ,vN!5pN~v1 , . . . ,vN!)
i 51

N

P1
v i~xi !,

~4!

i.e., the increments conditional to a certain set of varian
v1 , . . . ,vN are independent variables. Howeve
PN(x1 , . . . ,xN ;v1 , . . . ,vN) is not directly observable. The
object of measurement is theunconditionalPDF

PN
unc~x1 , . . . ,xN!

5E dv1 . . . dvNPN~x1 , . . . ,xN ;v1 , . . . ,vN!,

~5!

which is only factorized ifpN(v1 , . . . ,vN) is.
A special case of process with PDF given by Eq.~4! is

xk5Avkjk , ~6!

where thejk are independent random variables with ze
mean and unit variance, independent ofvk , and with PDF
P0(j). In this case,

P1
v~x!5

1

Av
P0S x

Av
D . ~7!

For this special process the PDF is assumed to change
time only through a time-varying scale factor. The proce
reduces to that of Eq.~3! if P0 is Gaussian; howeverP0 does
not necessarily need to be Gaussian. For example, in
@48# ARCH-type processes with at-studentP0 are used.

The characteristic function ofP1
v(x) is

P1
v~z!5E dx exp~ izx!P1

v~x! ~8!

→P0~Avz!. ~9!

Here and in the following→ indicates the result for the
particular case of a scale-factor-type process,@Eq. ~6!#.
P0(z) is the characteristic function ofP0(x).
he
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P1
v(z) can be used@1# to calculate moments and cumu

lants ofP1
v(x) of any ordern:

mn
v~1!5~2 i!n

dn

dzn
P1

v~z!uz50→vn/2mn
0 ~10!

cn
v~1!5~2 i !n

dn

dzn
ln P1

v~z!uz50→vn/2cn
0 , ~11!

mn
0 and cn

0 being moments and cumulants ofP0. The as-
sumed symmetry ofP1

v(x) implies that all its odd-order mo
ments vanish. The variancem2

v(1)5c2
v(1)5v. The normal-

ized cumulants are

hn
v~1!5

cn
v~1!

vn/2
→cn

0 . ~12!

The kurtosiskv(1)5h4
v(1) is zero for the process of Eq.~3!.

1. Unconditional PDF for N51

.
For the Gaussian-type processes of Eq.~3!, it is easy to

extract p1(v) from a given measuredP1
unc(x). Using Eqs.

~4!, ~5!, and~9! its characteristic functionP1
unc(z) is found to

be

P1
unc~z!5E dvp1~v !expS 2

v
2

z2D . ~13!

Sincep1(v)50 for v,0 ~the variance has to be positive!,
Eq. ~13! is a Laplace transform. Settingz2/25s,
P1

unc(A2s)5L„p1(v)…. Thus, the PDF of the variancep1(v)
giving an observedP1

unc(z) is the inverse Laplace transform
p1(v)5L 21

„P1
unc(A2s)…. If P1

unc(z) is a symmetric Le´vy
PDF with indexa, it follows thatp1(v) is itself a Lévy PDF,
Eq. ~1!, of index a/2 and asymmetryb51, m50 @3#. This
latter has an essential singularity atv50. If P1

unc(z) is a
symmetric TL PDF, the singular behavior close tov50 re-
mains, but the decrease ofp1(v) for v→` changes from
algebraic to exponential.

For a general process such a Laplace-transform relat
ship is lost. By differentiatingP1

unc(z) at v50, moments
mn

unc(1) of P1
unc(x) of any ordern can be expressed in term

of moments ofP1
v(x):

mn
unc~1!5~2 i !n

dn

dzn
P1

unc~z!uz505^mn
v~1!&v , ~14!

where^ f (v)&v5*dvp1(v) f (v) and mn
v(1) is thenth-order

moment ofP1
v(x) @Eq. ~10!#. The kurtosis ofP1

unc(x) is

kunc~1!5
m4

unc~1!

„m2
unc~1!…2

23→ ^v2&v

^v&v
2 ~k013!23, ~15!

wherek0 is the kurtosis ofP0. As is well known, a fluctu-
ating variance~for which ^v2&vÞ^v&v

2) can produce a non
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Gaussian PDF@kunc(1)Þ0# even whenP0 is Gaussian
(k050). Thus, a given measuredP1

unc(x) may be consisten
with many different choices of the pair@P1

v(x), p1(v)]. For
example, the observed leptokurtic character ofP1

unc(x) may
arise either from a leptokurticP0 or from fluctuations of the
variance or from both effects.

2. Unconditional PDF for N > 1

At time N.1 the characteristic function of the uncond
tional PDF of the sumPN

unc(x), x5( i 51
N xi , is found from

Eq. ~4!:

PN
unc~z!5E dv1, . . .dvNpN~v1 , . . . ,vN!)

i 51

N

P1
v i~z!.

~16!

For independent variance fluctuations,pN(v1 , . . . ,vN)
5) i p1(v i), andPN

unc(x) is simply given byP1
unc(x) convo-

luted N times with itself. In this case cumulants, includin
the variance, scale asN. The kurtosis decreases askunc(N)
5N21kunc(1).

If fluctuations of the variance are correlated, by differe
tiating Eq.~16! at z50, moments ofPN

unc(x) of any ordern
may be expressed in terms of averages of products of
ments ofP1

v(x) taken at different times, the average bei
made over pN(v1 , . . . ,vN). The variance scales a
m2

unc(N)5Nm2
unc(1), just as for uncorrelated~or no! vari-

ance fluctuations. The kurtosis depends on linear correlat
of the variances@49#:

kunc~N!5kunc~1!/N1k̃unc~N! ~17!

k̃unc~N!56~21kunc~1!! (
d51

N

~1/N2d/N2!g~d!

g~d!5
^v1v11d&v2^v&v

2

^m4
v~1!&v2^v&v

2
5

Š^x1
2x11d

2 &‹2Š^x2&‹2

Š^x4&‹2Š^x2&‹2
,

where^ . . . &v is an average over variance fluctuations, a
Š^ . . . &‹ is an average over fluctuations of thexi and the
variances. The normalized two-times autocorrelation of
squared increments,g, determines the degree of persisten
of variance fluctuations. The simplest models of the type
Eq. ~3! ~such as those considered in Ref.@43#! have a posi-
tive g(d);K exp(2d/d0). In Ref. @38# g(d);g0d20.37 is
found from the 5-min increments of the S&P500 index.
any case, in presence of positive variance correlatio
kunc(N) may decrease withN much more slowly than if
g(d)50. Thus, roughly speaking, the slowing down of t
decrease ofkunc(N) pushes the onset of a Gaussian regi
@kunc(N)→0# to much larger values ofN than expected
from independent~or no! variance fluctuations. The problem
is that for most models, and in particular those of the type
Eq. ~3!, these heteroskedastic contributions toPN

unc(x) may
be inconsistent with Le´vy behavior close tox50.

To make the variance autocorrelationg explicit in
PN

unc(z), it is convenient to characterize the stochastic p
-

o-

ns

d

e
e
f

s,

e

f

-

cess followed by the variances by its multivariate charac
istic function pN(k1 , . . . ,kN). For independent vk ,
pN(k1 , . . . ,kN)5) i p1(ki), p1(k) being the Fourier trans
form of p1(v). When correlations are presen
pN(k1 , . . . ,kN) may be expressed as

pN~k1 , . . . ,kN!5expS 2A(
i , j

g~ i 2 j !kikj1SD)
i

p1~ki !

5)
i

p1~ki !S 12A(
i , j

g~ i 2 j !kikj1 . . . D .

~18!

Here A5^m4
v(1)&v2^v&v

2 , and S5o„(uk1u1•••1ukNu)2
…

contains contributions from mixed cumulants
pN(v1 , . . . ,vN) of order higher than two@50#, e.g., terms of
type kikjkl or kikjklks with the time indicesi, j, l, ands not
all equal. These describe correlations of the variances
higher order than those described byg. The approximation of
putting S50 corresponds to make a Gaussian-like dec
pling of these high-order correlations into products of line
two-times „g(d)… and equal-time correlations@e.g., ^v1

3v2&
53g(1)^v2&1^v&^v3&].

Let us consider, for example, models of the type of E
~3!, which are the most commonly used. For these mode
has been shown@Eq. ~13!# that it is possible to choosep1(v)
such thatP1

unc(x) is a TL PDF. By using Eq.~18!, g(d) may
be made explicit inPN

unc(z) @Eq. ~16!#. By a few simple
manipulations, it is possible to sum up all the contributio
of g to P1

unc(z) to obtain

PN
unc~z!5P1

unc~z!NexpS Az4

4 (
i , j

g~ i 2 j !1O~z6! D
~19!

It is peculiar to the processes of Eq.~3! that the contributions
O(z6) do not depend ong, but only on higher-order correla
tions @S in Eq. ~18!#. More specifically, mixed cumulants o
orderp in Eq. ~18! give termsO(z2p) in the exponent of Eq.
~19!. To produce a Le´vy scaling of PN

unc(x) for small x,
PN

unc(z) has to behave as@P1
unc(z)#N;exp(2Nguzua) for

largez. Then, constraints should be put on variance corre
tions of any order to ensure that asz→` the exponent in Eq.
~19! does not diverge more strongly thanza. It is also pos-
sible that for largez the contributions of variance fluctuation
to PN

unc(z) be not determined by its smallz behavior, i.e., by
its moments@1#. In turn, this may happen ifpN(v1 , . . . ,vN)
itself is not uniquely determined by its moments, i.
pN(k1 , . . . ,kN) has singularities. In any case, such nona
lytic contributions would not yield a Le´vy scaling in general.

IV. TRUNCATED LE´ VY FLIGHTS
WITH HETEROSKEDASTICITY

It has been shown above that if the elementary P
P1

v(x) is Gaussian, Le´vy behavior ofPN
unc(x) may be ob-

tained only by makingad hocassumptions aboutp1(v) and
the multivariate structure of variance fluctuations, whi
looks somewhat artificial. It is simpler and more intuitive
assume, instead, that for somev, P1

v(x) itself is equal or
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FIG. 1. Probability of return vs timeN. Tri-
angles: truncated Le´vy flight with Markov-chain
heteroskedasticity~HLF! and parameterspa

50.9, pbb50.9929, a51.4, va50.00393, ka

5500, and vb50.1246 ~see text!. g(N);exp
(2N/126). Circles: i.i.d. variance fluctuations
g(N.1)50. Squares: TLF withv50.016, k
543. Lower inset: kurtosisvs time N for the HLF
~triangles! and for the two other nonheteroskeda
tic processes~circles!. Upper inset: scaled PDF
Ps(Xs)5N1/aPN

unc(Xs), Xs5xN1/a for the HLF
with various values ofN compared with a Le´vy
PDF with a51.4 andg50.0037.
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of
close to a TL PDF. There are many possible ways to cho
how the parameterv should enter. If a TL PDF with expo
nential cutoff atl;l21 @7# is used forP1

v , its variance and
kurtosis are, respectively,

v5
ga~a21!la22

ucos~pa/2!u
, k5

~a23!~a22!

l2v
. ~20!

If the scaling exponenta is fixed, a time-varyingv may
occur either through variations ofg ~these reflect variations
of trading volumes in economic applications!, or variations
of the cutoffl or of both.

Although the central part of a superposition of TL PDF8s
with varying g does not have an exact Le´vy behavior, this
behavior still exists approximately for many choices
p1(v), i.e., one can find a Le´vy PDF with the samea and an
effectiveg which describes approximately the central part
the superposition. For example, ifv or g have a log-normal
PDF ~given thatv, g.0 this is a simple possible candida
PDF!, the central part of the superposition is dominated
the g corresponding to the peak of the lognormal~non-
Gaussian region, high kurtosis!, while the tail for g→`
~quasi-Gaussian region, small kurtosis! mostly affects the
tails of the superposition. In general, the smaller values og
determine the smallx behavior of P1

unc(x). On the other
hand, the central part of a superposition of TL PDFs w
varying cutoffl keeps an almost exact Le´vy behavior, since
l only affects the tails of the PDF.

In the following we focus on some qualitative features
TLF’s with correlated fluctuations of the variance. We stu
the simplest conceivable nontrivial model, which neverth
less contains relevant features of this type of process, and
the advantage that an accurate numerical evaluation
PN

unc(x) can be made without approximations. The varian
is assumed to fluctuate between two possible values onlyva
and vb , va,vb . Thus p1(v)5pad(v2va)1(12pa)d(v
2vb). If pa@0.5 one may viewp1(v) as a stylized lognor-
mal PDF, withva representing the position of the maximu
andvb representing the tail of the lognormal. ForP1

va we use
a TL PDF with high kurtosis~strongly non-Gaussian behav
se

f

f

y

f

-
as
of
e

ior!. P1
vb should represent a TL PDF with small kurtos

~quasi-Gaussian behavior!. To simplify the model as much a
possible, and minimize the number of parameters,P1

vb is

assumed to be Gaussian with variancevb . Thus P1
unc

5paP1
va1(12pa)P1

vb.
For the stochastic process followed by the variances,

simplest choice is a Markov chain@1#. ThuspN(v1 , . . . ,vN)
is determined by assigning the probabilitypa at timeN51,
and the transition probabilitiespaa and pbb , i.e., the prob-
ability that if v5va ~or v5vb) at any timeN, thenv5va ~or
v5vb) at time N11 ~in the economatric language th
would be called aMarkov switchingmodel!. If the condition
that the Markov chain be stationary is imposed, two fr
parameters, i.e.,pa , and pbb , are left for the chain. These
are to be added to the three parameters@a, g, and l or,
using Eq.~20!, a, va , andka] which fix P1

va, and the single

parameter (vb) which fixes P1
vb. Note that for this model

g(d), @Eq. ~17!#, decays exponentially withd.
For the purpose of illustration, we try to apply this sty

ized model to the S&P500 data of Refs.@8,33#. Four param-
eters are fixed by the valuesa51.4, m2

unc(1);0.016 @51#,
kunc(1)543, andP1

unc(x50);15 measured for the 1-min
increments of the S&P500 index for the period 1984–19
A fifth parameter is fixed by the decay rated0 of g(d).
Although by the Markov chain model it is not possible
directly reproduce the measured algebraically decay
g(d), we do not expect this to affect the results qualitative
as long as the kurtosis is well mimicked. Thusd0 is fixed
(d0;126 min!, roughly, by demandingkunc(N), @Eq. ~17!#
~see Fig. 1!, to be be equal to unity at the same valueN
;3700 which is found from Eq.~17! if one uses forg(d) the
same expressiong(d);0.08d20.37 found in Ref.@38# for the
5-min increments of the S&P500 index future for the peri
1991–1995. Since the time window and time step of R
@38# are not the same as those of Refs.@8,33#, the value ofd0
is only indicative. One parameter (pa) remains free, and is
fixed at 0.9~any value close to one gives similar results!.

As may be seen in the inset of Fig. 1, the central part
P1

unc(x) is close to a Le´vy PDF. PN
unc(z) is evaluated up to

N510 000 by performing 43107 simulations of the Markov
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chain, enough to ensure full convergence of the resu
These simulations yield a numerical estimation of the mu
variate probability distribution of the variance
pN(v1 , . . . ,vN), by whichPN

unc(z) is calculated through Eq
~16!. PN

unc(x) is then calculated by a numerical Fourier tran
form of PN

unc(z).
The probability of returnPN

unc(x50) is plotted in Fig. 1.
For comparison,PN

unc(x50) is plotted for uncorrelated vari
ance fluctuations@in this case PN

unc(z)5„paP1
va(z)1(1

2pa)P1
vb(z)…N], and for a TLF with i.i.d. increments an

again a51.4, m2(1);0.016, andk(1)543. As expected,
for the two latter models, the onset of a Gaussian reg
@PN

unc(x50);N20.5# occurs as soon asN@kunc(1). This
would not be in agreement with observations, since Le´vy
scaling @PN

unc(x50);N21/a#, is observed up to at leastN
51000. Instead, for the heteroskedastic model the kurt
decreases much more slowly~see Fig. 1! and the Gaussian
regime occurs for much larger values ofN. An approximate
Lévy scaling persists up toN;2000. In the inset it is shown
that such approximate scaling extends to finite values ofx as
-

,

r.
s.
-

-

e

is

well @PN
unc(x);P1

unc(xN21/a)N21/a# @8#. Gaussian scaling
is estimated to occur only forN*30 000.

V. CONCLUSIONS

In conclusion, TLF8s with correlated fluctuations of th
variance ~heteroskedasticity! have been considered. Thes
processes may be of relevance to the modeling of som
nancial time series. An explicit numerical calculation h
been made by using, for the stochastic process followed
the variances, the simplest conceivable model, i.e., a Mar
chain. Parameters suitable to model the behavior of
S&P500 stock index have been chosen for illustration.

The central part of the PDF of the increments during o
time step,P1

unc(x), is close to a Le´vy PDF. What makes
these stochastic processes interesting is the fact that L´vy
scaling of the PDF may persist for times order of magnitud
larger than for uncorrelated~or no! variance fluctuations.

It has also been shown that, using the Gaussian-type m
els of Eq.~3!, a Lévy scaling of the PDF may be obtaine
only when quitead hocassumptions about the multivaria
structure of variance fluctuations are made.
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