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Levy scaling in random walks with fluctuating variance
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Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland
(Received 10 June 1999

Truncated Lgy flights with correlated fluctuations of the variangeeteroskedasticilyare considered. A
stylized model is introduced, in which the variance fluctuates between two possible values following a Markov
chain process. Analogously to conventional truncatedylféights with fixed variance, the central part of the
probability distribution function of the increments at short time scales is found to be close”wy alisé&ribu-
tion. What makes these processes interesting is the fact that the crossover to the Gaussian regime may occur for
times considerably larger than for uncorrelated no) variance fluctuations. Processes of this type may find
direct application in the modeling of some economic time series, in whiely kealing and heteroskedasticity
are known to coexist.

PACS numbgs): 05.40.Fb, 02.50.Ga, 87.23.Ge

[. INTRODUCTION The TL PDF belongs to the basin of attraction of the
Gaussian PDF: for largd the sum ofN i.i.d. TL variables is
The ubiquity of the Gaussian probability distribution Gaussian-distributed. For smallthe central part of the PDF
function (PDP in physics and statistics is a consequence ofof the sum has a lwy shape, but the variance and higher
the central limit theoren{CLT) [1], which states that the moments are finite. For symmetric TL PDF’s the deviation
PDF of the sum ofN independent, identically distributed from a Gaussian may be quantified by the value of the nor-
(i.i.d.) stochastic variables whose variance is finite convergesalized fourth cumulantkurtosis, «) [1]. This is zero for a
to the Gaussian PDF whe¥i— o, Gaussian, and positive for a TL PDF. The crossover to the
If the hypothesis of finite variance is relaxed, a general-Gaussian regime is given b{¥>Ngo|“ with | the cutoff
ized CLT still existq2,3]: the PDF of the sum belongs to the length. Under this conditions becomes very smalkee Eq.
family of Levy stable distributions, defined by the character-(20)).
istic function (Fourier transform In this paper, the TLF stochastic process is generalized to
include a special form of nonlinear dependence of the incre-
L(z)=exdimz—y|z|*(1+iBz/|z|tan@w/2))], (1) ments calledheteroskedasticityOne can build processes
with dependent increments such that the central part of the
with 0<a<2. Fora=2 the Gaussian distribution is recov- PDF of the sum still approximately behaves as in ayLe
ered, while fora<2 the PDF possesses power-law tailsflight. What makes these processes interesting is the fact that
L(x)~Cx "9 which make the variance infinite. In this the crossover to the Gaussian PDF may be pushed to values
paper, only symmetrically distributed stochastic variables ar@f N which are larger by some order of magnitudes than if
considered, for whictm=3=0. the increments were independent.
A Levy flight[2—4] (LF) is a random walk in which the
step length is chosen from the PDF of Ed). Since Ley
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distributions are stable under convolution, the LF process is

self-similar, i.e., the same kg distribution describes incre- Besides being interesting per se, these processes are of
ments over different time scales, provided the increments aréirect relevance to one of the most noteworthy applications
appropriately rescaled. of LF outside physics, i.e., to the modeling of some financial

Levy flights appear in various physical problefds5], in  time serie8]. From a physicist's perspective, the market is
particular diffusion, fluid dynamics, and polymers. However,a very good example of a complex systg@-11] in which
because of their infinite variance and lack of a characteristithe mutual interaction and competition among a great num-
scale, Ley PDFs overestimate the probability of extreme ber of agentstraders or speculatorsvith continually adapt-
events when used to model real physical systems, for whicing strategies, together with the influence of unpredictable
an unavoidable cutoff is always pres¢6i. The most direct exogenous factors, usually produces an intricate out-of-
way to make the variance finite is by meanstafncated equilibrium dynamics.

Levy (TL) PDF’s[6]. The TL PDF is close to a lwy PDF In the classical equilibrium theory of economy it is as-
for small argument, but it contains a sh&fj or exponential  sumed that “equilibrium” values for the prices exist, satis-
[7] cutoff in the tails. Atruncated Ley flight (TLF) is a  fying an aggregate, overall consistency conditioecalling
random walk in which the step length is chosen from a TLthe so calledNashequilibria solutions of game theofyt 2]).
PDF. However, the complex dynamics of market prices does not
seem to fit this classical picture. In particular, trading volume
and price volatility are much higher than expected from the
*Present address: Oxford Physics, Clarendon Laboratory, Parkadlassical theory[13]. From time to time, the market may
Road, Oxford OX1 3PU, UK. display strong movementsrashes or boostswhich cannot
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always be understood in terms of rational reactions to incomvariations of the Standard & Poor’'s 508&P500 index
ing new information[14]. Instead, some of their features [8,33]. An alternative quantity which may be used is the
recall the physical concept of self-organized criticality]. so-called Hurst exponerisee, e.g., Ref.39)).

At last, trading volumes and variances of price increments As with other applications of LF, while lwy distributions
change over tim¢16], and may persist as low or high for describe well the central part of the PDF for short times, the
long periods. The existence of such correlated variance fluggower-law tails of these distributions are much fatter than
tuations(heteroskedasticiyyis difficult to understand in the observed. In particular, the observed variance is finite. All
framework of classical equilibrium theory, and few eco-the previous remarks suggest the TLF as the best candidate
nomic models can explain {see, e.g., Refl17], where an to model these serid89,43.
equilibrium model capable to mimic volatility fluctuations of =~ Two aspects, however, remain unexplained: one is the
interest rates is developed fact that the crossover to the Gaussian regime occurs at much

A fundamental source of this complex dynamics may bdarger times than expected from the TLF modahd from
found in the inductive, subjective, and adaptive nature of theany model with i.i.d. increments as welFor example, the
process leading agents to formulate the expectations whicbne-minute PDFP, of the S&P500 index increments has
drive their actiond9,18-24, an aspect whose fundamental kurtosis ;=43 [8,43]. If the PDF at timeN, Py, were P,
features can be captured by more or less elaborated artificiatonvolutedN times with itself (with kurtosis ky= k1 /N),
life models[9,20,23-2& Gaussian behavior would be expectedNor «; (see Fig. L

Aside the “microscopic” origin of the complexity of fi- However, the central part & displays Ley behavior up to
nancial markets, another aspect of the problem is the pheat leastN=1000[8].
nomenological (“macroscopic”) characterization of this  The second aspect not accounted for is heteroskedasticity:
complexity, in particular the study of the properties of eco-even if linear correlations are almost zero, there are correla-
nomic time series. The development of new tools in thetions of the squared increments, i.e., the increments at differ-
theory of nonlinear dynamical systems triggered a greagnt times are uncorrelated yet not independent random vari-
amount of initial interest in the possibility of chaotic dynam- ables. Put another way, one cannot factorize the joint
ics in financial and macroeconomic time seri@sg., the probability density of the increments at different times into
problem of macroeconomic cycle$10,29-31. However, the product of reduced densities. The model proposed in the
little evidence for low-dimensional chaos has been foundfollowing can account at the same time for both these as-
For “efficient” financial markets this is not surprising, since pects.
it is clear that any evideritinear or nonlinegrforecastability
would rapidly be eliminated by agents exploiting it.

Given the low level of determinism of these series, the
most fruitful description is in terms of stochastic processes. A. Gaussian-type models

Martingale processefl] are the signature of market effi- Many efforts have been devoted in the past two decades

ciency. In particular, random walk or Brownian-motion mod- . X X .
y-inp to the study of time-varying variance, and various models

g:‘sarslzgte t;ﬁ:ee%guzﬁe?_ggn"’:iIohr:gbgrﬂﬁ(jtgrggggglJh?h'gir;?;?tﬁave been put forward by econometricians. Roughly, two
P ' 9 y reat classes of models exist: autoregressive-conditional-

!|m|t theorem if price chang_es r_esulted from the sum of manyg?1eteroskedasticity(ARCH)-type models and stochastic-
independent random contributions, which would seem a rea\fariance(S\/)—type models
sonable assumption. Indeed, empirical studies of financia Models of both classes are usually set up in a Gaussian

time Series have revealed Gaussian behavior for Iong tlmﬁ'amework: if time is discretized with an elementary time
scales, typically of the order of several days. However, it has

been showr8,33] that for short time scales the central part steps, the increments at tHe_th time step(i.e., att=kr) are
of the PDF is not Gaussian. It is well described by 'a/y_pe assumed to be random variables of the form
distribution, and therefore suggests an underlying LF rather
than random-walk model. Xe= i+ Wie . ©)
Non-Gaussian scaling has been found in many economi-
cal or financial indiceq8,34—-4(Q. The way this scaling Here
emerges is the central issue for the microscopic models me
tioned abovdsee also Refd41,42, where a Langevin-type
approach is discussgpdn financial time series, scale invari-
ance can be characterizge., the value of the self-similarity
exponentx in Eq. (1) can be extractdceither by comparing
the full PDF of price increments over different time scales, ARCH and SV models differ in the way the, process is
or by studying the time-scale dependence of some selecte&,

) - ecified: in ARCH-type mode(€l4,45 the variance at time
properties of the PDF. For example, the probability of rEturr'stepk is a deterministic function of the past squared incre-

ments and variances, while in SV-type model§] the vari-
1(= : ; ; ;
PN(X:O):_J L)\, 2) ance is not completely determined by the past data, since it
mJo contains a random contribution. With suitable choices of
their parameters, both type of models can account for the
which depends on the time scalkeas N~ ¥, was used to heteroskedasticity and positive kurstogisptokurtosi of
extract the valuer~ 1.40 in the high-frequencfone-minut¢  the PDF of financial series, although usually they fail to cap-

IIl. MODELS FOR HETEROSKEDASTICITY

is the time-varying mean of the stochastic process
'E;uk is very small, and can safely be set to zero, for the short
time scales considered here, is a random variable repre-
senting the time-varying variance of the process, gndre
independent Gaussian random variables with zero mean and
unit variance, independent of; .



PRE 61 LEVY SCALING IN RANDOM WALKS WITH . . . 95

ture all aspects of the dafa7]. In particular, it has been PY(z) can be used1] to calculate moments and cumu-
shown by numerical simulations in R¢#3] that the sim-  |ants of PY(x) of any ordem:

plest ARCH-type models do not yield the \yetype scaling

of the PDF described above, since already at short times the n
value of the scaling exponent is close to the Gaussian one. m‘g(l)z(—i)”@P‘{(zHZ:o—w”’zmﬂ (10
B. General models
n
. Let u; assume .'[hEk to be zero-meanv random varigbles c‘rﬁ(l)=(—i)“d—ln P‘1’(2)|Z=o—>v“’2cﬂ, (11)
with variancevy, with a symmetric PDFP *(x,) depending dz"

on the parametev, in an as yet unspecified way. The pa-

0 0 H
rameterv fluctuates in time following a stationary process. ™ @nd Cp being moments and cumulants Bf. The as-

Let pu(Vy, . . . vy) be the joint PDF of the variances at the SUmed symmetry oPj(x) implies that all its odd-order mo-
different times, and let us assume the joint PDF of incre-ments vanish. The varianeg;(1)=c3(1)=v. The normal-
ments and variances ized cumulants are
N CV 1
Pn(Xgs - XNV, - VN = PNV - 'VN)il_Il PI(X)), 7(1)= Ci/z) —cp. (12
4 . Voan
The kurtosis«<¥(1)= 7,(1) is zero for the process of E(B).
i.e., the increments conditional to a certain set of variances
Vi,...,vVy are independent variables. However, 1. Unconditional PDF for N=1
Pn(Xq, .. XNiV1, - - - ,Vy) IS not directly observableThe )
object of measurement is theconditionalPDF For the Gaussian-type processes of B, it is easy to
unc extractp,(v) from a given measure®;"(x). Using Egs.
PN (X1, e Xn) (4), (5), and(9) its characteristic functioR;"%(z) is found to
be
:f dVl A .dVNPN(Xl, oo XNV e ,VN),
5) 2”°(z)=f dvpl(v)ex;< - %zz). (13

which is only factorized ifoy(v1, . .. vn) IS. : _ < : ;
A special case of process with PDF given by E4).is Egce(gag\/)is 0 ;m Iilap%é;het\r/:rr;r;(r:;.hagé?tirt])gezzr/)gilts)?/e
PY"%(\/2s) = L(p1(Vv)). Thus, the PDF of the variangg (v)
X= \/v—kgk, (6) giving an observed;"%(z) is the inverse Laplace transform

p1(v)=L "YPY"(\2s)). If PY"%(z) is a symmetric Ley

where the, are independent random variables with zeropDF with indexa, it follows thatp,(v) is itself a Lary PDF,

mean and unit variance, independentvQf and with PDF  Eq. (1), of index «/2 and asymmetn8=1, m=0 [3]. This

Po(£). In this case, latter has an essential singularity at0. If P{"%(2) is a
symmetric TL PDF, the singular behavior closevte 0 re-

1 mains, but the decrease pf(v) for v—o changes from
PY(x)=—=P, _) ) (7)  algebraic to exponential. .
W W For a general process such a Laplace-transform relation-

ship is lost. By differentiating?;"(z) at v=0, moments
For this special process the PDF is assumed to change wimﬁnc(l) of P{"(x) of any ordem can be expressed in terms
time only through a time-varying scale factor. The processf moments ofP}(x):
reduces to that of Ed3) if P, is Gaussian; howevd?, does
not necessarily need to be Gaussian. For example, in Ref.
[48] ARCH-type processes with tastudentP, are used.
The characteristic function d?;(x) is

n

d
M) = (—1)"——P{"(2)|,=o=(M}(1),, (14
dz

y _ y where(f(v)),=fdvpi(v)f(v) andmy(1) is thenth-order
1(2):f dxexp(izx)P1(x) ®  moment ofP¥(x) [Eq.1(10)]. The kurtosis ofPY"(x) is
unc, 1 2
—Py(WV2). 9 KU1 _ M (D 3 v >V(Ko+3)—3, (15)

= —o—
(M3"(1))? (v)y
Here and in the following— indicates the result for the
particular case of a scale-factor-type proceldsqg. (6)].  wherexg is the kurtosis ofP,. As is well known, a fluctu-
Po(2) is the characteristic function d?y(X). ating variance(for which (v?),#(v)2) can produce a non-
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Gaussian PDH «“"%(1)#0] even whenP, is Gaussian
(ko=0). Thus, a given measuré?,"“(x) may be consistent
with many different choices of the pdiP}(x), p.(v)]. For
example, the observed leptokurtic characteP§f(x) may
arise either from a leptokurti, or from fluctuations of the
variance or from both effects.

2. Unconditional PDF for N> 1

At time N>1 the characteristic function of the uncondi-
tional PDF of the sunPy"%(x), x==Nx;, is found from
Eq. (4):

N
PK‘nC(Z):f dVl, .. .dVNpN(Vl, .. s ,VN)i];I;l P\JI_I(Z)

(16)
For independent variance fluctuationpy(vy, ... ,vN)
=TI;p1(v;), andPy"(x) is simply given byP{"(x) convo-

luted N times with itself. In this case cumulants, including
the variance, scale dd. The kurtosis decreases a%"%(N)
=N"1x""(1).

If fluctuations of the variance are correlated, by differen-

unc

tiating Eq.(16) at z=0, moments oPy"“(x) of any ordem

may be expressed in terms of averages of products of mo-
ments of P{(x) taken at different times, the average being

made over py(vq, ...,vy). The variance scales as
m5"(N)=Nm;"(1), just as for uncorrelatefor no vari-

ance fluctuations. The kurtosis depends on linear correlatior*%e made explicit in

of the variance$49]:

KUM(N) = kUML) /N + KU"(N) (17)

N
KIN(N)=6(2+ K“”C(l))dg1 (1IN—d/N?)g(d)

_ (ViVirahy—(V)s _ (G L )= (P

d)=
D (W2 (o2
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cess followed by the variances by its multivariate character-
istic function pyn(Kq, ... Ky). For independent vy,

pn(Ke, - .. ky)=1Lpa(k), p1(K) being the Fourier trans-
form of pq(v). When correlations are present,
pn(ky, - .. Ky) may be expressed as

Pn(Kg, - -kN):eXl{ _Ai2<]_ g(i—jkik;+$S 1_|[ p1(ki)

=H |01(ki)(1—Ai§<‘,j g(i —j)kik; + )
(18

Here A=(mj(1)),—(v)7, and S=o((|ky|+- - - +|kn])?)
contains  contributions from mixed cumulants
pn(Vy, ... ,vy) of order higher than tws0], e.g., terms of
typekikjk; or kik;k ks with the time indices, j, |, ands not
all equal. These describe correlations of the variances of
higher order than those describeddyrhe approximation of
putting S=0 corresponds to make a Gaussian-like decou-
pling of these high-order correlations into products of linear
two-times (g(d)) and equal-time correlation.g., (viv,)
=3g(1)(v?)+(v)(v3)].

Let us consider, for example, models of the type of Eq.
(3), which are the most commonly used. For these models it
has been showfEq. (13)] that it is possible to choogg; (V)

such thatP{"“(x) is a TL PDF. By using E¢(18), g(d) may
PY"(2) [Eq. (16)]. By a few simple
manipulations, it is possible to sum up all the contributions
of g to P{"%2) to obtain

of

AZ
PR"(2)= i"°<z>“exp(7 2 9(i-)+0(2")
(19

It is peculiar to the processes of H) that the contributions
0O(z°%) do not depend o, but only on higher-order correla-
tions[Sin Eq. (18)]. More specifically, mixed cumulants of
orderp in Eq. (18) give termsO(z?P) in the exponent of Eq.
(19). To produce a Ley scaling of Py"%(x) for small x,

\'%(z) has to behave agP{"%(z)]N~exp(—Nyz*) for

where( .. .), is an average over variance fluctuations, andargez Then, constraints should be put on variance correla-

{(...)) is an average over fluctuations of tle and the

tions of any order to ensure that zs-~ the exponent in Eq.

variances. The normalized two-times autocorrelation of thg19) does not diverge more strongly thafi. It is also pos-
squared incrementg, determines the degree of persistencesible that for largez the contributions of variance fluctuations
of variance fluctuations. The simplest models of the type oto P\"%(z) be not determined by its smallbehavior, i.e., by

Eqg. (3) (such as those considered in Rgf3]) have a posi-
tive g(d)~K exp(—dido). In Ref. [38] g(d)~god %% is

its momentd1]. In turn, this may happen fy(V1, - .. Vn)
itself is not uniquely determined by its moments, i.e.,

found from the 5-min increments of the S&P500 index. In pN(klr L ’kN) has Singu|arities_ In any case, such nonana-
any case, in presence of positive variance correlationgytic contributions would not yield a vy scaling in general.

«""Y(N) may decrease wittN much more slowly than if

g(d)=0. Thus, roughly speaking, the slowing down of the
decrease ok""Y(N) pushes the onset of a Gaussian regime

[k“"%(N)—0] to much larger values oN than expected
from independentor no variance fluctuations. The problem

IV. TRUNCATED LE VY FLIGHTS
WITH HETEROSKEDASTICITY

It has been shown above that if the elementary PDF

is that for most models, and in particular those of the type ofP}(x) is Gaussian, Ley behavior of Pj"(x) may be ob-

Eq. (3), these heteroskedastic contributionsP'“(x) may
be inconsistent with vy behavior close tx=0.

To make the variance autocorrelatiom explicit in
unc

tained only by makingad hocassumptions about;(v) and
the multivariate structure of variance fluctuations, which
looks somewhat artificial. It is simpler and more intuitive to

N (2), it is convenient to characterize the stochastic pro-assume, instead, that for some Pj(X) itself is equal or
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FIG. 1. Probability of return vs timél. Tri-
angles: truncated vy flight with Markov-chain
heteroskedasticity(HLF) and parametersp,
=0.9, ppp=0.9929, a=1.4, v,=0.00393, «,
=500, andv,=0.1246 (see text g(N)~exp
(—=N/126). Circles: i.i.d. variance fluctuations,
g(N>1)=0. Squares: TLF withv=0.016, «
=43. Lower inset: kurtosigstime N for the HLF
(triangles and for the two other nonheteroskedas-
tic processegcircles. Upper inset: scaled PDF
P(Xs)=NYePE"(Xy), Xs=xN"@ for the HLF
L . with various values oN compared with a [ey
L B3 10 N 100 1000 10000 1 PDF with «=1.4 andy=0.0037.

0.01 e | s s sl M| a0l MW |
1 10 100N 1000 10000

close to a TL PDF. There are many possible ways to choosgr). P} should represent a TL PDF with small kurtosis
how the parametev should enter. If a TL PDF with expo-  (quasi-Gaussian behavjoTo simplify the model as much as
nential cutoff atl ~\ ! [7] is used forPY, its variance and possible, and minimize the number of parameteﬁ?’ is
kurtosis are, respectively, ' . . . inc
assumed to be Gaussian with varianeg. Thus Pj
= pap\lla+ (1—pa) P\ib-
ya(a—1)\*"? (a=3)(a—2) For the stochastic process followed by the variances, the
T Jeodmal2) T T N2y (20 simplest choice is a Markov chaj]. Thuspy(vy, - . . V)
is determined by assigning the probabilfly at timeN=1,
_ o _ _ and the transition probabilitieg,, and pyy,, i.e., the prob-
If the scaling exponentr is fixed, a time-varyingv may  ability that if v=v, (or v=v,) at any timeN, thenv=v, (or
occur either through variations of (these reflect variations v=vp) at time N+1 (in the economatric language this
of trading volumes in economic applicationsr variations  \yould be called alarkov switchingmode). If the condition
of the cutoffA or of both. N that the Markov chain be stationary is imposed, two free
.Althou'gh the central part of a superposition of.TL F’SF parameters, i.ep,, andpy,, are left for the chain. These
with varying y does not have an exact e behavior, this are to be added to the three paramefers y, and\ or,

behavior still exists approximately for many choices of . e oV, .
p1(v), i.e., one can find a vy PDF with the samex and an  USiN9 EA-(20), @, va, andk,] which fix Py?, and the single

effective y which describes approximately the central part ofparameter ) which fixes P;°. Note that for this model
the superposition. For example vifor y have a log-normal g(d), [Eq. (17)], decays exponentially witH.
PDF (given thatv, y>0 this is a simple possible candidate  For the purpose of illustration, we try to apply this styl-
PDB), the central part of the superposition is dominated byized model to the S&P500 data of Ref8,33]. Four param-
the y corresponding to the peak of the lognormabn-  eters are fixed by the values=1.4, my"%(1)~0.016[51],
Gaussian region, high kurtogiswhile the tail for y—o KUN%(1)=43, andPY"(x=0)~15 measured for the 1-min
(quasi-Gaussian region, small kurtgsisostly affects the jncrements of the S&P500 index for the period 1984—1989.
tails of the superposition. In general, the smaller valueg of A Fsih parameter is fixed by the decay ratly of g(d).
determine the smalk behavior of P1"(x). On the other Ajthough by the Markov chain model it is not possible to
hand, the central part of a superposition of TL PDFs withgirectly reproduce the measured algebraically decaying
varying cutoffA keeps an almost exact e behavior, since  g(d), we do not expect this to affect the results qualitatively
A only affects the tails of the PDF. as long as the kurtosis is well mimicked. Thdg is fixed

In the following we focus on some qualitative features of (d,~126 min, roughly, by demanding“"%(N), [Eq. (17)]
TLF’s with correlated fluctuations of the variance. We study(See Fig. 1, to be be equal to unity at the same valNe
the simplest conceivable nontrivial model, which neverthe-_ 3700 which is found from Eq17) if one uses fog(d) the
less contains relevant features of this type of process, and hagme expressiog(d) ~0.0&d~ %% found in Ref.[38] for the
the advantage that an accurate numerical evaluation @_min increments of the S&P500 index future for the period
PN"(x) can be made without approximations. The variance;991-1995. Since the time window and time step of Ref.
is assumed to fluctuate between two possible values ogly, [38] are not the same as those of R¢&33), the value ofd,
and vy, va<Vp. Thus p;(v)=pad(v—Va)+(1-Ppa)d(V s only indicative. One parametep) remains free, and is
—Vp). If p,>0.5 one may viewp,(v) as a stylized lognor-  fixed at 0.9(any value close to one gives similar resylts
mal PDF, withv, representing the position of the maximum  As may be seen in the inset of Fig. 1, the central part of
andv,, representing the tail of the lognormal. Fef* we use  PY"(x) is close to a Ley PDF. P{"%(2) is evaluated up to
a TL PDF with high kurtosigstrongly non-Gaussian behav- N= 10000 by performing % 10’ simulations of the Markov
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chain, enough to ensure full convergence of the resultswell [Py"%(x)~P}y"(xN~Y*)N~Y=] [8]. Gaussian scaling
These simulations yield a numerical estimation of the multi-is estimated to occur only fd{=30 000.

variate  probability distribution of the variances
pn(Va, - .. VN), by whichPY"(2) is calculated through Eq.
(16). PY"(x) is then calculated by a numerical Fourier trans-
form of PN"9(2).

The probability of returrPy"“(x=0) is plotted in Fig. 1.
For comparisonPy"“(x=0) is plotted for uncorrelated vari-
ance fluctuationsfin this case P{"%(2) = (p,P;%(2) + (1
—pa)P;%(2)N, and for a TLF with i.i.d. increments and
again =1.4, m,(1)~0.016, andx(1)=43. As expected,

V. CONCLUSIONS

In conclusion, TLFs with correlated fluctuations of the
variance (heteroskedasticilyhave been considered. These
processes may be of relevance to the modeling of some fi-
nancial time series. An explicit numerical calculation has
been made by using, for the stochastic process followed by
the variances, the simplest conceivable model, i.e., a Markov
chain. Parameters suitable to model the behavior of the
S&P500 stock index have been chosen for illustration.

for the two latter models, the onset of a Gaussian regime The central part of the PDF of the increments during one

[PN"%(x=0)~N"%%] occurs as soon all>«“"%(1). This
would not be in agreement with observations, sinceyle
scaling[ Py"(x=0)~N"Y4], is observed up to at least

unc

time step,P{"%x), is close to a Ley PDF. What makes
these stochastic processes interesting is the fact that Le
scaling of the PDF may persist for times order of magnitudes

=1000. Instead, for the heteroskedastic model the kurtosikrger than for uncorrelate@r no) variance fluctuations.

decreases much more slowlgee Fig. 1 and the Gaussian
regime occurs for much larger valuesdf An approximate
Lévy scaling persists up thl~2000. In the inset it is shown
that such approximate scaling extends to finite valuesas

It has also been shown that, using the Gaussian-type mod-
els of Eq.(3), a Levy scaling of the PDF may be obtained
only when quitead hocassumptions about the multivariate
structure of variance fluctuations are made.
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